Quantcast
Channel: GMAT Club Forum - latest topics
Viewing all articles
Browse latest Browse all 160952

A rectangular solid is changed such that the width and lengt

$
0
0
A rectangular solid is changed such that the width and length are increased by 1 inch apiece and the height is decreased by 9 inches. Despite these changes, the new rectangular solid has the same volume as the original rectangular solid. If the width and length of the original rectangular solid are equal and the height of the new rectangular solid is 4 times the width of the original rectangular solid, what is the volume of the rectangular solid?

(A) 18
(B) 50
(C) 100
(D) 200
(E) 400

[Reveal] Spoiler:
Ok, so here is what I know:

~Old Volume = New Volume

~(L+1)(W+1)(H-9) = (L*W*H)

~(H-9) = 4w

~width, length of original rectangular are equal

So, from that I get:

(L+1)(W+1)(4w)=(W*W*H)

But in the book, the equation differs from mine in two ways.

For starters, mine is :(L+1)(W+1)(4w)=(W*W*H) while theirs is (W+1)(W+1)(4w)=(W*W*H)

Also, because (H-9)=4w, they derive H=4w+9 then plug it in so (W+1)(W+1)(4w)=(W*W*4w+9)

But here is my (apparently incorrect) reasoning.

L=W in the old rectangle, so why plug "W" into the new rectangle volume?

if (H-9)=4w, then why do I plug 4w into the new rectangle volume and h=4w-9 into the old rectangle formula? It seems unnecessary to have to plug in 4w for (h-9) then derive h=4w-9 and plug in on the other side.

What's the reasoning!

Thanks!

Viewing all articles
Browse latest Browse all 160952

Trending Articles