[GMAT math practice question]
A function \(f(x)\) satisfies \(2f(x)+3f(1-x)=x^2.\) What is the expression of \(f(x)\)?
\(A. \frac{(x^2 +6x +3)}{7}\)
\(B. \frac{(x^2 -6x +3)}{7}\)
\(C. \frac{(x^2 -6x +1)}{3}\)
\(D. \frac{(x^2 -6x +3)}{5}\)
\(E. \frac{(x^2 +6x +3)}{5}\)
A function \(f(x)\) satisfies \(2f(x)+3f(1-x)=x^2.\) What is the expression of \(f(x)\)?
\(A. \frac{(x^2 +6x +3)}{7}\)
\(B. \frac{(x^2 -6x +3)}{7}\)
\(C. \frac{(x^2 -6x +1)}{3}\)
\(D. \frac{(x^2 -6x +3)}{5}\)
\(E. \frac{(x^2 +6x +3)}{5}\)